You may be wondering, what is nanotechnology in medicine? Why is it important? And, how does it affect you as a reader?
This month, Tokyo will host the 17th edition of NanoTech – an international exhibition and conference on nanotechnology.
This year’s exhibition will feature research covering subjects from AI to cancer research, and aerospace to the environment. So what is nanotechnology, and how can it be a part of this wide variety of fields?
Nanotechnology is the technology of very small things, typically on a scale of 1-100 nanometres. To give you an idea of how small this is, if a marble were a nanometre, then one metre would be the size of the Earth. If you’re interested in diving deep into this niche check out our award-winning nanotechnology summer school to gain further insights before university.
It’s quite a recent technology. Before we had scanning electron microscopes (the kind of microscopes which can view things on an atomic scale) we couldn’t see things on a nanoscale, let alone make them.
Origins of Nanotechnology

In 1959 Richard Feynman, the famous physicist, gave a talk entitled “There’s Plenty of Room at the Bottom”, where he put forward the idea of manipulating individual atoms and molecules, and talked about the possibilities this would present. At this time, it was just an idea. It stayed this way until the scanning electron microscope was invented in 1981.
You May Like: Top Biomedical Inventions
This signalled a huge change in our abilities to do things on a tiny scale, and soon we were making astonishing creations.
In 1985, a joint research project between the University of Sussex and Rice University was taking place, aimed at identifying interstellar matter. As part of their experiments, the scientists were vaporising a carbon rod and noticed that C60 (a molecule made of 60 carbon atoms) was forming in spherical shapes.
This completely rewrote the current understanding of the chemistry of carbon. Previously, it had been thought and taught that carbon can take two forms – it’s either found as graphite or as diamond. These scientists had just discovered a whole new form of carbon, completely by accident.
You May Like: Why is the discovery of DNA important?
The structures they’d found are commonly known as “Buckyballs” and were the first “fullerenes” to be created. Now, many more have been made – tubes, ellipsoids, and loads of others.
Ready to take your learning further?
Join Succeed, our free platform for ambitious students aged 13-18 to get future-ready. Access expert-led masterclasses, interactive
goal-setting tools, and exclusive content.

Buckyballs have lots of uses – the hollow shape of the balls means they can encase other atoms, which can be useful as a delivery system.
There are hopes they could be used to carry radioactive elements into the body and deliver them to cancerous tumours.
Fullerenes have also been used in lubricants, electronics, superconductors, and countless other applications.
What’s Next for Nanotechnology?
Nanotechnology is a really new science, still taking its first baby steps. No one can really say where it will go next, although there has been a range of predictions – maybe we’ll be able to make pencils into diamonds, or maybe self-replicating nanorobots will take over the world! However, there are some exciting developments happening as we speak.
Nanotechnology in Electronics
A team of researchers from the University of Southampton made headlines recently after making a highly successful alternative to a transistor, called a memristor, using nanotechnology.
Transistors are the building blocks of all computing. They are found in huge numbers on circuit boards called chips in every digital device. Over the years, transistors have been getting smaller and smaller, allowing us to improve our technology time and again by putting more transistors on each chip. However, we are now reaching the physical limit of how small we can go. You can’t make anything smaller than an atom.

The memristor heralds a new step forward – whereas a transistor can either be on or off, a memristor can hold up to 128 different states at once! This could allow future computers to reach blistering speeds we can only dream of.
The team managed this amazing feat by layering metal-oxides on the nano-scale and experimenting with different combinations of metals within the memristor.
Nanotechnology in Sensors
One of the most interesting areas of nanotechnology that has been applied is medicine. As technology improves, there is a drive (and an ability) to move towards regular tracking of patients with ongoing conditions to help them manage their health over the long term.
Diabetes is a condition where the body can’t control the levels of sugar in the blood and affects millions in the UK alone.
Diabetics have to check their blood sugar levels regularly to make sure they don’t get too high or low. At the moment, this involves pricking the skin and drawing blood, which can be unpleasant and time-consuming.
People often avoid checking their blood sugar levels because of this – which can lead to them getting seriously ill.

A study on a wearable blood glucose sensor was recently published in the journal ACS Nano. The sensor could be part of a contact lens or watch and could detect levels of blood sugar through sweat or tears.
Using nanoribbons of indium oxide, the researchers made a biosensor by trapping an enzyme in the nanostructure.
When glucose was present, the enzyme would react with the glucose and make a tiny electrical signal.
The intensity of the overall signal gives the sensor a good idea of how much glucose is present. Further, it can be used to continually and painlessly track a patient’s levels.
Related Read: Nikolai – The Man Who Made Surgery Painless
The sensor has been found to be sensitive enough to pick up data from tears, sweat and saliva, in people with and without diabetes. It is also hardy – it can cope with being bent back and forth 100 times.
This incredible technology could change the lives of many diabetics, and lead to fewer people needing emergency treatment.
An Exciting Future
It will be interesting to see where nanotechnology takes us next – it really is the stuff of Sci-Fi.
There are still some worries about the safety of nanoparticles, as it is such a new technology with research still ongoing. However, when these concerns are allayed, we can expect big growth in this sector. As Richard Feynman said “There’s plenty of room at the bottom”.
Looking to learn more about Nanotechnology or Medicine?
Are you inspired or intrigued by the application of Nanotechnology in Medicine? Attend our award-winning Medical Summer School Programme where you will learn advanced topics such as Epigenetics, and other advances made in the field of medical technology.